Fahrzeugbau

Im Spritzgussverfahren hergestellter Einschiebehaken aus glasfaserverstärkten Polyamid

Kunststoffteile in Einsatzfahrzeugen der Feuerwehr. Einsatzfahrzeuge nehmen eine Sonderstellung im Fahrzeugbau ein, an die hohe Erwartungen gestellt werden. Dementsprechend hoch sind die Anforderungen, die an Bau und Ausrüstung gestellt werden.

Der Einschiebehaken findet Anwendung in einem Aluminiumprofil eines Einsatzfahrzeugs der Feuerwehr. Dort wird er eingeschoben und ist frei beweglich. Für den robusten Alltag eines Einsatzfahrzeuges hat sich das Material PA 6 GF bewährt.

Glasfaser­verstärkte Kunststoffe sind kostengünstige und mechanisch hoch beanspruchbare Werkstoffe. Das Glas bewirkt eine deutliche Erhöhung des Elastizitätsmoduls, zudem bewirken Glasfasern, längs der Fließrichtung, eine Erhöhung der Zugfestigkeit. Speziell bei Polyamiden wirkt sich die Versetzung mit Glasfasern positiv auf die Wasser- und Volumenzunahme aus. Je mehr Glasfaser im Polyamid enthalten ist, desto weniger Wasser kann der Werkstoff aufnehmen. Dadurch ist man in der Lage die Volumenzunahme gering zu halten.

Besonders glasfaser­verstärkte Kunststoffe schöpfen den Vorteil der relativ hohen mechanischen Belastung zur Bauteilgröße in großen Maßen aus. Dadurch erobern immer mehr Kunststoffe Anwendungsgebiete, in denen bisher Leichtmetalle eingesetzt wurden.

 

Vom Trennen zum Urformen

Es gibt viele mechanische Verfahren, um Gegenstände aus Kunststoff herzustellen. Nicht jede Methode eignet sich für jeden Herstellungsprozess. 

Die Zerspanung ist ein schneller und wirtschaftlicher Weg zum fertigen von Kunststoffteilen in Kleinserien und hat sich hervorragend für die anfängliche Herstellung der Einschiebehaken geeignet. Durch eine kontinuierliche Bedarfssteigerung und durch die zahlreichen Fertigungs­möglichkeiten der Kern GmbH, wurde gemeinsam mit dem Kunden nach einer neuen wirtschaftlichen Fertigungsalternative gesucht. Unser leistungs­starker Werkzeugbau und der automatisierte Spritzguss bilden eine echte Alternative zur spanenden Herstellung, bereits bei mittelgroßen Serien.

Die Herstellung der Einschiebehaken im Spritzguss findet in einem Einfachwerkzeug statt. Dadurch, dass der Einschiebehaken eine Hinterschneidung aufweist, erfolgt die Entformung mithilfe eines Unterflurschiebers. Der Unterflurschieber sitzt unterhalb der Trennebene und sorgt dafür, dass die Hinterschneidung vor der eigentlichen Entformung entformt wird. Der Anguss erfolgt seitlich mit einem Stangenanguss.

Dank der schnellen und präzisen Fertigung unseres hochmodernen Maschinenparks gehören teure Formkosten der Vergangenheit an. Die Automatisierung unserer Spritzgussfertigung erfolgt mit 6- Achs-Robotern, da diese aufgrund der hohen Freiheitsgrade eine schnelle Umrüstung erlauben. Dadurch sind wir in der Lage bereits bei mittelgroßen Serien wirtschaftlich für Sie zu fertigen.

Die Fertigungsvielfalt der Kern GmbH macht uns zu einem leistungs­fähigen Partner für kleine und mittlere Serien. Wir beraten Sie gerne, welches Fertigungs­verfahren für Ihr Produkt das Wirtschaftlichste ist.

 

Polyphenylenoxid (PPE) Kleben

Spritzgegossenes Lüfterrad in zwei Varianten. Mit oder ohne aufgeklebter Deckscheibe

Variantenfertigung durch Kleben. Serienfertigung von geschlossenen und offenen Lüfterrädern.

Die Lüfterflügel sitzen unter der Gebläsehaube von Elektromotoren. Wir fertigen zwei Varianten, mit und ohne Lüfterwand.

Die Fertigung der beiden Bauteile erfolgt in einfachen, kostengünstigen Form­werkzeugen. Denn das Kleben der Lüfterwand erübrigt eine mechanisch komplexe Schieberform.

Die Klebung des amorphen PPE erfolgt mit Lösungs­mittel, einem Butanon. Sie verbindet die beiden Bauteile wie aus einem Guss.

Spulenkörper aus Kunststoff

Kunststoff-Spulenkörper aus verschiedenen Thermoplasten

Spezielle Spulenkörper, auch in kleinen Losgrößen. Vorteile glasverstärkter Thermoplaste nutzen.

Kern fertigt Spulenkörper für Transformatoren, Spulen, Drosseln, Antennen und andere induktive Bauteile. Dabei nutzen wir die Kosten­vorteile und Eigenschaften von glasfaser­verstärkten Thermoplasten.

Spulenkörper sind im Wesentlichen drei Arten von Belastungen ausgesetzt:

Mechanik. Relativ zur Bauteilgröße übt die Drahtwicklung enorme Kräfte auf den Spulenkörper aus. Gleichzeitig sind dünne Wandstärken für die Induktion ideal. Damit ist der Abstand zwischen Wicklung und Spulenkern möglichst klein. Diese Forderung erfüllen Werkstoffe mit exzellenten mechanischen Festigkeiten.

Brandverhalten. Für elektrische und elektronische Bauteile werden meist Einstufungen in Brandklassen nach UL 94 gefordert. Bei der Festlegung des Werkstoffes berücksichtigen wir die dünne Wandstärke von Spulenkörpern.

Wärme. In elektrischen Bauteilen entsteht Wärme, besonders bei hoher Leistungsdichte. Glasfaserwerkstoffe bieten eine hohe Wärmeform­beständigkeit.

Thermoplastische Spulenkörper fertigen wir für die Elektrotechnik und Energietechnik, Informationstechnik und Messtechnik, Medizintechnik, Schweißtechnik und für den allgemeinen Maschinenbau.

Thermoplastische Spulenkörper.
Eine Auswahlliste der Werkstoffe.
Wir fertigen Kunststoff-Spulenkörper aus spritzgegossenen Granulaten und zerspanten Halbzeugen.
  mechanische Festigkeit
 
Kriechstrom­festigkeit Wärmeform­beständigkeit CTI Glühdrahtprüfung
IEC60695-2-12 GWFI
Brennverhalten nach UL 94
Einheit [MPa] [–] [°C] [°C] bei Wandstärke [mm]

Brandklasse UL 94 HB (horizontal burn)

PA 6/6T GF50 260 570 230 650 HB (1,5)
PA 6/6T GF60 250 600 285 700 HB (0,8)
PPA GF33 193 550 280 700 HB (1,5)
PA 66 GF35 150 450 250 700 HB (1,5)
PBT GF30 135 375 215 650 HB (0,75)
PA 46 GF30 115 500 290 675 HB (0,9)
PA 6 GF30 110 450 210 700 HB (1,5)
PA 12 GF30 105 550 160 650 HB (0,75)

Brandklassen UL 94 V-2 und V-0 (vertical burn)

LCP GF30 190 175 235 960 V-0 (0,2)
PPA GF33 V0 169 550 273 V-0 (0,75)
PEI GF30 165 150 210 V-0 (0,25)
PEEK GF30 156 175 315 V-0 (0,41)
PPS GF40 150 125 260 V-0 (0,38)
LCP GF30 HT 150 175 276 V-0 (0,2)
PBT GF30 V0 145 200 205 V-0 (0,4)
PES GF20 130 125 212 V-0 (0,4)
PA 46 GF30 V0 125 225 290 V-0 (0,3)
PA 66 GF35 V0 120 600 250 V-0 (0,8)
PA 66 V2 50 600 75 V-2 (0,4)

Ultraschallnieten

Ultraschallnieten von thermoplastischen Kunststoffteilen.

Ultraschall nietet Formschlüsse. Spaltfreie Verbindung durch Überwindung der Rückstellelastizität.

Kern nietet mit Ultraschall thermoplastische Kunststoffe untereinander und mit anderen Materialien. Dabei muss nur ein Fügepartner thermoplastisch sein.

Ultraschalleinbetten

Stehbolzen und andere Metallteile in Kunststoff mit Ultraschall eingebettet.

Ultraschall bettet Metalle und Hochleistungspolymere in Thermoplaste. Positionsgenau und spannungs­frei bewehrte Kunststoffteile.

Metall-/Kunststoffverbindungen und Kunststoffpaarungen ohne Polymerverträglichkeit fügen wir durch Formschluss. Das Ultrachallfügen ist präzise, spannungs­frei und schnell.

Präzision beim Ultraschallschweißen

Ultraschall schweißt Präzision. Auch bei kurzen Taktzeiten tolerierte Maße halten.

Auf unseren hochwertigen Ultraschall-Schweißmaschinen mit verwindungs­steifem Maschinenbett fertigen wir Präzision. Hohe Positioniergenauigkeit und Reproduzierbarkeit in der Serienfertigung zeichnet das Ultraschweißen aus. Unsere spezielle Erfahrung bei sphärischem Verlauf der Verbindungslinien lassen spannungsarme, verzugsfreie Bauteile entstehen.

Dichtigkeit durch Ultraschallschweißen

Dichtigkeit im Armaturenbau. Spritzgegossener Druckdeckel mit amorphem Schauglas.

Ultraschall schweißt Dichtheit. Effektiv zu sauberen und zuverlässigen Fügenähten.

Flüssigkeitsdicht, gasdicht oder auch nur staubdicht. Mit Ultraschallschweißen stellen wir zuverlässige, hermetisch geschlossene Fügenähte her, auch in drei Dimensionen. Die Verbindung wird sekundenschnell mit einer hohen Schweißnahtqualität hergestellt. Das Versäubern der Schweißnaht ist nicht nötig, denn die Schweißschmelze kann konstruktiv eingekapselt werden.

Ultraschallschweißen

Polypropylen Spritzgießen und Ultraschallschweißen

Ultraschall schweißt Zusammenhalt. Aus zwei wird eins.

Unter Druck presst eine Sonotrode zwei thermoplastische Bauteile zusammen, ein Amboss bildet das Gegenlager. Die Kunststoffteile berühren sich an den zu schweißenden Stellen, die als Energierichtungsgeber (ERG) dachförmig ausgebildet sind. Die Ultraschall-Sonotrode schwingt mit 20 – 35 kHz. Die Schwingung überträgt sich auf die Kunststoffteile, durch die Grenzflächenreibung entsteht Wärme, der Kunststoff schmilzt. Zusätzlich wirkt die Molekularreibung. Der Druck schweißt die Kunststoffteile zusammen und mit dem Erkalten entsteht ein zuverlässiger Stoffschluss.

PP/EPDM und SB-TSG

Instrumentenhalter aus PP/EPDM (TPE-V, Santoprene) und Styrol-Butadien TSG

Lautlos weich, belastbar hart. Komfortable Instrumentenablage für die Medizintechnik aus funktionalen Kunststoffen.

Benutzer therapeutischer und diagnostischer Geräte konzentrieren sind auf ihre medizinische Aufgabe. Untergeordnete Handgriffe sollen nicht ablenken. Unproblematisches Nehmen und Ablegen von Instrumenten hält die Konzentration auf das Wesentliche.

Instrumentenköcher sind Stößen und Aufprallenergien ausgesetzt, manchmal auch etwas ruppigeren. Köcher sind deshalb entsprechend robust ausgelegt und aus hochwertigen Kunststoffen gefertigt.

Montage vs. 2K-Spritzguss. Einbausituationen, Fertigungslosgröße, Designvorgaben, Chemikalienbelastung, Kräfte. Eine Vielzahl an Anforderungen entscheiden über unsere Fertigungs­strategie für Bauteile in Medizingeräten. Die Baugruppe besteht aus 3 Werkstoffen. Metallteil und Grundkörper aus SB-TSG fertigen wir mit der Inserttechnik. Aufgrund der geringen Stückzahl wenden wir für die Weichkomponente unser 2K-Verfahren nicht an. Hier hat sich die getrennte Fertigung mit anschließender Montage als kostengünstiger erwiesen.

Steifer Rahmen. Dickwandig, starr und steif ist das Tragteil. Es ist im Thermoplastischen Schaumguss aus Styrol/Butadien TSG (SB-TSG) gefertigt. Der eingespritzte Metallstift positioniert den Halter spielfrei. Mit lediglich einer Schraube wird die Baugruppe am Chassis des Gerätes endlagegesichert befestigt.

Weiche Dämpfung. Das Dämpfungselement fertigen wir aus einem thermoplastischen Vulkanisat (PP/EPDM, TPE-V) im Spritzguss. Die Werkstoffeigenschaften des elastischen Polymers erlauben dem Gerätebenutzer ein beschädigungs­freies und geräuschloses Ablegen der Instrumente. Die ausgeprägte Haftreibung erzeugt zudem eine Lagesicherung.