Tray

Robuste und stapelbare Werkstücktrays aus Kunststoff

Wenn der Werkstücktray stabiler sein soll. Details und Funktionen massiv integriert.

Wiederverwendbare, robuste und funktionale Werkstücktrays aus Kunststoff fertigen wir im TSG-Verfahren, konstruiert für Ihre Anwendung.

Die spezielle Technologie TSG erlaubt uns, dickwandige und funktionale Trays herzustellen. Der TSG fertigt unterschiedliche Wandstärken in einem Bauteil. Selbst Sprünge in der Wandstärke sind möglich. Das Konstruieren ist einfach und die Detaillösungen vielfältig.

Trays werden aus schlagzähen Werkstoffen fertigt. Erhöhte Ansprüche erfüllen verschleiß- und stoßfeste Kunststoffe. Ein langlebiger Einsatz im industriellen Alltag ist gewährleistet.

Einfach konstruieren, einfach integrieren. Funktionen in diesem Werkstück­trägersystem. Das TSG-Verfahren ermöglicht den Einsatz stoßfester Thermoplaste und die Umsetzung robuster und dickwandiger Trays. Der hohe Automatisierungsgrad heutiger Produktionen stellt Trays und Konstrukteure vor individuelle Aufgaben.
Stapeln Der Stapelrand ist umlaufend, er hilft Platz zu sparen im Lager und bei der Bereitstellung. Die selbststützende Konstruktion stapelt größte Lasten, was bei tiefgezogenen Kunststofftrays ungewöhnlich ist.
Handling Der innerbetriebliche Transport erfolgt durch Maschinen oder mit der Hand. Die Tragegriffe sind dickwandig gestaltet, sicheres Greifen bei großen Traglasten ist gewährleistet.
Positionierung Die exakte Positionierung der Trays auf den Vorrichtungen wird durch integrierte Indexierbuchsen gewährleistet. Der Roboter kann schnell und präzise zugreifen.
Varianz Zwei unterschiedliche Größen und eine Variante als Deckel aus nur einem Form­werkzeug. Intelligenter Formenbau sorgt für niedrige Werkzeugkosten dank Wechseleinsätzen.

Pinbohrgerät

Pinbohrgerät

Pinbohrgerät. Präzisionsmodelle in der Dentalmedizin schnell und sicher gebohrt.

Ein passgenauer Zahnersatz setzt die präzise Herstellung des Zahnmodells voraus. Erschwert wird dies durch die natürliche Gipsexpansion, wodurch der Zahnkranz nach der Expansion mit der Mundsituation des Patienten nicht mehr übereinstimmt. 

Um den Einfluss dieser Expansion zu mindern, werden in der Dentalmedizin Pinbohrgeräte eingesetzt, mit denen sich Pinpositionen exakt, schnell und sicher in eine Kunststoffplatte bohren lassen. Sie ist in einer Plattenaufnahme gespannt, die wiederum magnetisch fixiert wird, um die Bohrposition unverrückbar zu sichern. Mithilfe eines Lasers kann der Anwender die Bohrposition auf dem Zahnkranzabdruck einfach finden und den Bohrvorgang auslösen.

Die in der Kunststoffplatte als Pinbohrlöcher gespeicherten Lageinformationen dienen zur exakten Positionierung des ausgegipsten Zahnkranzes. Dadurch wird der eben beschriebenen Gipsexpansion entgegengewirkt und die exakte Mundsituation des Patienten im Modell wiedergegeben.  

Die Kunststoffgehäuseteile des dargestellten Pinbohrgeräts werden aus dem Material Styrol/Butadien im thermoplastischen Schaumguss hergestellt und sind brandgeschützt nach UL 94 V-0. Zur Stromversorgung des Lasers liegt ein Aluminiumrohr im Tragarm des Rückteils. Das um 90 Grad gebogene Kabelrohr wird vor dem Spritzgussprozess in das Werkzeug eingelegt und anschließend umspritzt.

Die Front des Pinbohrgeräts weist Durchbrüche für die Bohrvorrichtung, den magnetischen Plattenträger und die beiden Drucktaster auf. In den Durchbrüchen für die Drucktaster ist jeweils ein Gewinde, das mittels eines Gewindekerns geformt wird, der nach dem Auswerfen des Gehäuses von Hand ausgedreht wird. Ein Prozessschritt, der bei höheren Stückzahlen auch automatisiert stattfinden kann. Hier aber zu Gunsten niedriger Werkzeugkosten einfach und manuell gelöst ist. Die rückseitigen Anschraubdome haben Kernlochbohrungen für selbstformende PT-Schrauben,so dass in der nachfolgenden Montage alle weiteren Komponenten einfach und schnell angeschraubt werden können.

 

 

 

 

 

Die Kraft kommt von innen

Die Kraft kommt von innen. Verzugsarme Formteile aus Thermoplast.

Spritzgussteile sind durch die ausgereifte Fertigungs­technik vielseitige und preisgünstige Serienbauteile. Um diese Voraussetzungen zu ermöglichen, bedarf es an die Bauteilkonstruktion hohe Anforderungen. Ein wesentlicher Grundsatz sind geringe und vor allem gleiche Wandstärken. Dieser Umstand führt meist zu komplexen Geometrien und wegen der Bauteilsteifigkeit zu Verrippungen. Problemzonen im Spritzgussteil.

Konstruktionsideen scheitern, weil sie unterschiedliche Wandstärken, Materialanhäufungen oder Verrippungen bedingen. Mit teurer Formenbautechnik können Materialanhäufungen verdrängt werden. Dies erhöht die Komplexität und die Rentabilität rechnet sich bei kleinen und mittleren Stückzahlen nicht mehr.

Verstärkt wird dies durch die Anisotropie bei gefüllten Werkstoffen. Die Orientierung der Füllstofffasern wirkt hierbei als Verzugsverstärker. Darunter leidet die Form- und Lagetoleranz am Bauteil.

Dieses Problem löst das TSG-Verfahren. Im Treibmittelspritzguss (TSG) gefertigte Bauteile weisen ein weitgehend kompaktes Gefüge auf, welches um etwa 3 bis 5% durch Treibmittel expandiert wird. Dadurch werden die Schwunddifferenzen innerhalb des Spritzgussteiles kompensiert und die speziellen Eigenschaften des Werkstoffes bewahrt. Das bringt für die Bauteilkonstruktion entscheidende Vorteile und Freiheitsgrade.

Im TSG-Verfahren gefertigte Formteile haben einen weitgehend ausgeglichenen Spannungshaushalt. Die übliche Nachdruckphase im Spritzgussprozess entfällt und damit auch der bis zu 1000 bar hohe Druck, bei dem Spannungen im Bauteil erzeugt und eingefroren werden. Die Kompensation der Schwindung bei TSG erfolgt homogen aus der Schmelze, aus eigener innerer Kraft und an allen Stellen gleich.

Für kleine und mittlere Bedarfsmengen steht das TSG-Verfahren in der Gesamtbetrachtung von der Idee bis zum funktionierenden Teil sehr weit vorne. Kleine, präzise Teile im Gewichtsbereich von einem Gramm bis hin zu stabilen, passgenauen Bauteilen im Maßereich von 2.000mm und einem Gewicht von 20 kg sind im Markt oftmals alternativlos im Einsatz. Die gestellten Anforderungen werden funktionsgerecht erfüllt und das TSG-Formteil zeigt die notwendige Substanz.

Durch ein größeres Bauteilvolumen steigen Materialeinsatz und Zykluszeiten, was sich in höheren Teilepreisen niederschlägt.

Die Vorteile der im thermoplastischen Schaumguss (TSG) gefertigten Bauteile auf einen Blick:

  • verzugsarme Bauteilgeometrie
  • breit einsetzbare Palette an Thermoplasten
  • Gestaltungs­freiheit bei der Bauteilkonstruktion
  • Einfallstellen werden unscheinbarer
  • hervorragende Passgenauigkeit der Bauteile zueinander
  • sehr hohe Reproduzierbarkeit
  • geringe Investitionskosten durch günstige Formen

TSG-Gehäusesatz

Gehäusesatz gefertigt im Thermoplastischen Schaumguss, TSG

Multifunktionales Analysengerät. Gehäusebaugruppe mit vielen Montagevarianten.

Das Gehäuse ist flexibel, es bietet vielfältige Schnittstellen zum Anbringen und Einbauen von Zusatzmodulen. Feine Fugen deuten auf die hinter Klappen und Deckel liegenden Flansche, Stecker und Einschubfächer. Yellow Design hat das Analysengerät gestaltet. Der Entwurf hat den IF Design Award und den Deutschen Designpreis gewonnen.

IF product design award 1999
dpbb design preis brandenburg 1999

Sein modulares Konzept passt das Analysengerät an die wechselnden Aufgaben des Anwenders an: Es verarbeitet Einzelproben oder arbeitet voll­automatisiert mit Probenteller. Es steht statisch auf dem Labortisch oder mobil auf einem Trolly in der industriellen Fertigung. Es analysiert flüssige Proben und Tabletten sowohl im medizinischen Labor, in der Pharmazie als auch in der Lebens­mittelindustrie.

Das Gehäuse besteht aus bis zu 6 unterschiedlichen Elementen. Alle Gehäusbauteile fertigen wir aus einem einheitlichen Werkstoff im Thermoplastischen Schaumguss (TSG). Das gewählte Styrol/Butadien (SB) ist ein schlagzäher, zugleich formfreudiger Gehäusewerkstoff. Die in unserem Lackierwerk aufgebrachte Strukturlackierung unterstreicht Wertigkeit und Anspruch des Investitionsguts, ist funktional begründet: Der dreischichtige Lackaufbau erhöht Härte und Chemikalienresistenz der Oberflächen. Unser Werkzeugbau hat den Formensatz in kürzester Zeit hergestellt.

Protein-Analysegerät

Thermoplastischer Schaumguss (TSG). Flache Gehäuseschalen bringen kostengünstige Formen

Kompliziert ganz einfach. Flache Gehäuseschalen bringen günstige Formkosten.

Infektionskrankheiten zählen zu den häufigsten Todesursachen weltweit. Zunehmende Resistenzen gegen Antibiotika, die rasante Verbreitung von Erregern über Ländergrenzen hinweg sowie neu auftretende Viren und Bakterien bilden den Rahmen für eine der größten wissenschaftlichen und medizinischen Herausforderungen unserer Zeit.

Die Translationale Medizin bildet die Schnittstelle zwischen der theoretischen Laborforschung und der praktischen Anwendung am Patienten, nach dem Motto „bench to bedside“. Forschungsergebnisse sollen so schnell wie möglich in klinischen Anwen­dungen in Form von Prävention und Therapie zur Verfügung stehen.

Das zur Unterstützung der translationalen Forschung entwickelte Protein-Analysemessgerät ist ein integriertes System, das für die parallele Analyse mehrere Biomarker in Piktogrammmengen biologischer Proben entwickelt wurde. Das innovative Analysemessgerät ermöglicht es den Wissenschaftlern ein Maximum an qualitativ hochwertigen und reproduzierbaren Erkenntnissen aus den Proben zu gewinnen. Das System ist in zwei Ausführungen erhältlich, die erste zur Aufnahme von 96 Proben und die zweite für 384 Proben pro Durchgang.

Das Protein-Analysemessgerät besteht aus insgesamt sechs Kunststoffgehäuseteilen, die im Thermoplastischen Schaumguss (TSG) aus dem Material Styrol/Butadien und mit einem Brandschutzzusatz hergestellt werden. Die Gehäuseteile weisen neben der Brandschutzklasse V0 eine hochwertige Strukturlackierung auf, die die Anmutung der Teile hervorhebt und den Kunststoff vor aggressiven Reinigungs­mitteln schützt. Die rückseitigen Anschraubdome haben sowohl Kernlochbohrungen für selbstformende PT-Schrauben als auch Gewindeeinsätze für das regelmäßige Abnehmen von Gehäuseteilen zur Wartung.

Für die Montage des Touch-Displays und der zwei mechanischen Tasten weist die Front des Deckels diverse Konstruktionselemente auf. Durchgangsbohrungen und ein langer Tastenschacht, die entgegen der Entformungsrichtung liegen, wurden im Werkzeugkonzept umgesetzt. Die flache Ausgestaltung der Formteile bringt geringe Werkzeugkosten und beschleunigt die Fertigstellung der Werkzeuge. Zur Aufnahme der Probenkörper besitzt die Gehäusefront eine rechteckige Aussparung, die mit einer kleinen Kunststoffabdeckung verschlossen ist.  

 

 

 

Leistungselektronik

Kunststoff-Endkappen

Individuelle Standardgehäuse. Endkappen aus Kunststoff werten Strangpressprofile auf.

Elektronikgehäuse werden aus Kostengründen und der Einfachheit halber oft aus Aluminiumstrangpressprofilen gefertigt. Dabei bilden die Strangpressprofile den Grundkörper der Geräteeinhausung. Die Vorteile sind eine variable Länge und die Robustheit. Hinzu kommt der Nebeneffekt, dass Elektronikkomponenten einfach eingeschoben werden können. Nachteile sind die fehlende Flexibilität im Design und damit verbunden ein gewöhnliches Aussehen.

Um aus einem solchen Entwicklungs­kompromiss das Beste zu machen, kann das Standardgehäuse durch individuell gestaltete Abschlusskappen aus einem Thermoplastischen Schaumguss (TSG) aufgewertet werden.

Die Gestaltung der Rückseitenplatte erfolgt nüchtern und funktionsbasiert. Sie bedarf deswegen keiner besonderen Aufmerksamkeit.

Anders verhält es sich bei der Frontseitenplatte, denn hier besteht die Möglichkeit über Form- und Farbgebung dem an sich standardisierten Gehäuse ein unverwechselbares Design zu geben.

Nahezu unerschöpflich sind die Möglichkeiten in der Konstruktion dieser Bauteile. Mit der Integration von Aufnahmepunkten für Displays und Bedienelementen steigt die Funktionalität der Frontseitenplatte. Den Schutz vor Nässe und Staub gewährleisten in den Front- und Rückseitenplatten gekammerte Dichtelemente. Die wartungs­freundliche Demontage und Wiedermontage im Service wird durch Gewindeeinsätze oder die moderne PT-Schraube ermöglicht. Vorzugsweise geschieht das über die Rückseite. Der Frontseite ist es vorbehalten, Design und technische Funktion miteinander in Einklang zu bringen.

Im TSG-Verfahren können die meisten thermoplastischen Werkstoffe verarbeitet werden und dadurch auch Anforderungen an die Schlagfestigkeit und Robustheit erfüllt werden.

Für beide Endkappen gilt, dass sich wegen der geringen Bauteiltiefe sehr günstige Formkosten einstellen. So tun sich wirtschaftlich gut zu vertretende Wege auf, um trotz des überwiegend standardisierten Konstruktionsverfahrens individuelle Designkomponenten bis hin zu einem Corporate Identity einfließen zu lassen.

Reinigungsbehältnisse

Reinigungsträger sind ein spezieller Anwendungsfall für Werkstückträger

Reinigungs­behältnisse mit erweiterter Chemikalienbeständigkeit. Monoblock-Werkstück­träger aus Polymeren statt aus korrodierenden Metalldrähten und Blechen.

Bauteilsauberkeit: Kern konstruiert und fertigt chemikalienresistente Werkstück­träger für industrielle Reinigungsprozesse. Auswahl und Modifikation des Werkstoffes reagieren zielgerichtet auf die vom Kunden verwendeten Reinigungs­mittel und die jeweilige Einsatzsituation.

Beständigkeit gegen eingesetzte Chemikalien und Temperaturen, Handhaben von Bauteilen mit komplexer Kontur oder hohem Teilegewicht, Gestalten von Abtropfmöglichkeiten, Vermeiden von Rückkontamination und die nahtlose Integration in die Intralogistik des Unternehmens sind oft erfüllte Anforderungen.

Effizienter in den Prozessen. Vom einfachen Drahtgestell weg zum funktions­integrierten Reinigungs­behältnis aus Thermoplasten ist oft ein lohnender Schritt. Dank der Formfreudigkeit von Thermoplasten sind hochgradig funktions­integrierte Reinungsgestelle möglich. Die Effizienz Ihrer Fertigungsprozesse wird immens gesteigert: Neben der industriellen Reinigung sind gezielte Robotergriffe, Prüfungen, selbst Montagen innerhalb des Reinigungsgestells möglich.

Schonender. Ein entscheidender Vorteil von Reinigungs­behältern aus Kunststoff gegen solchen aus Metall ist, dass empfindliche Bauteiloberflächen geschont werden.

Zuverlässiger. Drahtgestelle oder Blechbehälter verbiegen leicht. Sie kennen dieses Ärgernis bestimmt auch von zu Hause, wenn die Aufnahmen des Drahtkorbs der Spülmaschine verbogen sind. Im industriellen Einsatz bedeuten verbogene und verzogene Reinigungs­behälter Produktionsstillstand. Hier sind Werkstück­träger aus Thermoplasten klar im Vorteil, sie sind verwindungs­steif und können nicht verbeulen.

Fernsteuerungen in der Fördertechnik

Fernsteuerungen für Hebezeuge

Verdeckte Sollbruchstellen vermitteln Vollwertigkeit. Flexible Handgehäuse für modular aufgebaute Gerätefamilie. Realisiert mit wenigen Form­werkzeugen.

Funkbasierte Steuerungen werden im Industrieeinsatz immer beliebter. Zu verdanken ist dieser Erfolg der funktionalen Zuverlässigkeit von redundantem Funkweg und der modernen Generation von Akkus. Der Einsatz ist in der EN ISO 13849-1 geregelt. Sie steuern Anlagen, Geräte, Hebezeuge und Signale. Moderne Funksender sind frei programmierbar. Das macht sie universell einsetzbar. Abhängig von den zu steuernden Geräten und der zu erfüllenden Funktions­vielfalt werden unterschiedlich viele Befehlsgeräte im Bedienfeld benötigt.

Die hier neu entwickelte Gerätefamilie steuert Kräne und Hebezeuge. Sie hat mindestens 6 Taster. Je nach Ausstattungswunsch können die Handsteuerungen mit der doppelten Anzahl von Tastern bestückt werden.

Bisher setzte der Kunde Standardgehäuse für 12 Taster ein. Die freien Plätze waren durch Blindstopfen verschlossen. Ein solcher Handsender gibt dem Benutzer das Gefühl, eine nicht vollwertige Ausrüstung und nur eine eingeschränkte Kontrolle und Steuerungs­möglichkeit zu haben.

Funkfernsteuerungen in drei Gehäusegrößen sind entstanden. Nicht verwendete Plätze sind verdeckte Sollbruchstellen. Das ergonomische Industriedesign ist preisgekrönt. Der Thermoplastische Schaumguss (TSG) gab die Gestaltungs­freiheit.

PP/EPDM und SB-TSG

Instrumentenhalter aus PP/EPDM (TPE-V, Santoprene) und Styrol-Butadien TSG

Lautlos weich, belastbar hart. Komfortable Instrumentenablage für die Medizintechnik aus funktionalen Kunststoffen.

Benutzer therapeutischer und diagnostischer Geräte konzentrieren sind auf ihre medizinische Aufgabe. Untergeordnete Handgriffe sollen nicht ablenken. Unproblematisches Nehmen und Ablegen von Instrumenten hält die Konzentration auf das Wesentliche.

Instrumentenköcher sind Stößen und Aufprallenergien ausgesetzt, manchmal auch etwas ruppigeren. Köcher sind deshalb entsprechend robust ausgelegt und aus hochwertigen Kunststoffen gefertigt.

Montage vs. 2K-Spritzguss. Einbausituationen, Fertigungslosgröße, Designvorgaben, Chemikalienbelastung, Kräfte. Eine Vielzahl an Anforderungen entscheiden über unsere Fertigungs­strategie für Bauteile in Medizingeräten. Die Baugruppe besteht aus 3 Werkstoffen. Metallteil und Grundkörper aus SB-TSG fertigen wir mit der Inserttechnik. Aufgrund der geringen Stückzahl wenden wir für die Weichkomponente unser 2K-Verfahren nicht an. Hier hat sich die getrennte Fertigung mit anschließender Montage als kostengünstiger erwiesen.

Steifer Rahmen. Dickwandig, starr und steif ist das Tragteil. Es ist im Thermoplastischen Schaumguss aus Styrol/Butadien TSG (SB-TSG) gefertigt. Der eingespritzte Metallstift positioniert den Halter spielfrei. Mit lediglich einer Schraube wird die Baugruppe am Chassis des Gerätes endlagegesichert befestigt.

Weiche Dämpfung. Das Dämpfungselement fertigen wir aus einem thermoplastischen Vulkanisat (PP/EPDM, TPE-V) im Spritzguss. Die Werkstoffeigenschaften des elastischen Polymers erlauben dem Gerätebenutzer ein beschädigungs­freies und geräuschloses Ablegen der Instrumente. Die ausgeprägte Haftreibung erzeugt zudem eine Lagesicherung.

Steuereinheit für die Solaranlage

Gehäuse für ein Steuergerät der Gebäudeautomation
Wandgehäuse

Solaranlage auf dem Dach. Display auf dem Schreibtisch.

Das Gehäuse des Steuergerätes für Photovoltaikanlagen ist in Wohnraumqualität ausgeführt. Formgebung und Farbwahl richten sich am aktuellen Trend der Konsumelektronik aus. Industriedesign und die geschickte Kombination verschiedener Herstellverfahren bilden eine Symbiose und das fertige Gerät verkörpert eine hohe Wertigkeit.

Baugruppe aus 6 Teilen. Gehäuseunterschale, Akkufachabdeckung, Clips-Wandhalterung und Bedienungs­knopf sind aus Acryl-Butadien-Styrol (ABS) hergestellt und in anthrazitgrau eingefärbt. Alle Sichtflächen sind mit einer Erodierstruktur versehen. Die Oberschale ist aus Styrol/Butadien (SB) im thermoplastischen Schaumguss verarbeitet. Sie wird mit einem 3-schichtigem Metalliclack veredelt, fein strukturiert und versiegelt.

Polycarbonat mit Polysiloxan-Beschichtung. Die Displayscheibe wird aus einem Polycarbonat (PC) spritzgegossen. Eine optionale Beschichtung des klarsichtigen Kunststoffes mit Polysiloxan erhöht die Kratzfestigkeit der Displayscheibe. Der Test mit Stahlwolle 0000 wird dank dieser Beschichtung bestanden.

Alle drei in der Baugruppe verwendeten Kunststoffe sind mit Brandschutz ausgerüstet, zertifiziert nach der Norm UL 94-V0.