KWK-System

Kunststoffgehäuse mit Design

Coole Luftführung. Abdeckung bringt günstige Formkosten und Kaltluft ins Innere.

Kern fertigt stark verrippte, robuste und windungs­steife Abdeckung für eine Mikro-KWK-Anlage. Dabei nutzen wir die Vorteile moderner Werkstoffe und kombinieren diese mit dem Thermoplastischen Schaumguss (TSG).

Das Kraft-Wärmekopplungs­system (KWK) erzeugt Strom und nutzbare Wärme mithilfe von Brennstoffzellen. Die kompakten Ausmaße erlauben eine Installation im eigenen Gebäude. Dies ermöglicht eine vom Wetter unabhängige Grundlastversorgung.

Effizient & kostengünstig. Das Design sorgt für eine günstige Umsetzung. Die moderne Linienführung zeigt die hohe Gestaltungs­freundlichkeit des Herstellverfahrens. Dadurch bekommt das Gehäuse eine moderne und hochwertige Ausstrahlung. Für die äußere Anmutung und Beständigkeit wird dieses lackiert.

Langlebig & funktionell. Bei glatter Front ist die Gehäuseinnenseite aerodynamisch gestaltet. Seitlich zulaufende Rippen sorgen für die notwendige Steifigkeit und dienen als Luftführung ins Gehäuseinnere. Der eingesetzte Werkstoff Styrol/Butadien (SB) ist dauerhaft schlagfest.

Messermühle für den Einsatz im Labor

Kunststoffkomponenten einer Labormühle

Rotationsmesser und Becher. Reproduzierbare Zerkleinerung für alle gängigen Proben.

Eine zuverlässige und genaue Analyse von Produkt- oder Materialproben hängt maßgeblich von der Qualität der Probenvorbereitung ab. Diese sollte einen hohen Homogeniserungsgrad und Reproduzierbarkeit aufweisen.

Das Herzstück der Messermühle sind die zwei einseitig geschliffenen Klingen, die sich rotierend im Zentrum des Mahlgefäßes befinden. Je nach Drehrichtung, Umdrehungs­zahl und Mahlzeit wird mit der stumpfen Seite vorzerkleinert und mit der scharfen Seite auf die gewünschte Korngröße homogenisiert. 

Anhaltende Rotationskräfte, durchgehender Probenkontakt und hoher Verschleiß wirken dauerhaft auf die Konstruktion. Dennoch soll das Mahlwerk hochpräzise, leicht und sterilisierbar sein.

Das Mahlwerk wird in der Inserttechnik gefertigt. Die aus Titan bestehenden Klingen werden mit einem hochleistungs Kunststoff umspritzt. Dabei werden die Klingen im Vorfeld maschinell in die hochpräzise Werkzeugform gelegt und mit Unterdruck in Position gehalten. Der aus PVDF bestehende Messerzylinder fügt beide Messer zu einem hochbelastbaren Bauteil.

Der Mahlbehälter mit Deckel wird aus Polypropylen im Spritzguss hergestellt und ist autoklavierbar. 

Gehäuse für Handgerät im TSG

Gehäuse für Handgerät im Thermoplastischen Schaumguss (TSG)

Formgestaltete Sicherheit. Gehäuse für handgehaltenen Sprengstoff- und Drogendetektor.

Spürhunde sind bei Polizei, Zoll und Bundeswehr im Einsatz, wenn der Mensch nicht weiterkommt. Sein ausgeprägter Geruchssinn nimmt selbst feinste Partikel wahr, indem er in Schnüffelatmung bis zu dreihundertmal in der Minute einatmet. Die aufgenommenen Duftstoffe werden auf der Riechschleimhaut gelöst und von den Riechzellen als elektrische Impulse an das Gehirn weitergeleitet.

Der Nachteil von Spürhunden sind die Fehlanzeigen und die kurze Einsatzzeit, denn schon nach 20 Minuten ist der Hund an seiner Leistungsgrenze und braucht eine Pause. Überdies schafft er nur 3 Suchvorgänge an einem Tag. Und schließlich kann ein Diensthund nur für einen Einsatzzweck spezialisiert werden.

Duft ist eine chemische Substanz und Riechen eine chemo-elektrische Transduktion, und so liegt es nah, den Detektor Hund durch einen elektronischen Detektor zu ersetzen, der keine Pausen braucht und zuverlässigere Ergebnisse liefert. Diese auf der IMS-Technologie (Ionenmobiltätsspektrometrie) basierenden hochempfindlichen Spurendetektoren sind auch in der Lage gleichzeitig Drogen- und Sprengstoffspuren im Nanogramm-Bereich zu erkennen. Es gibt sie als stationäre und mobile Detektoren.

Die hier gezeigten Gehäuseteile gehören zu einem handgehaltener Sprengstoff- und Drogendetektor zum Einsatz an Flughäfen, an Gebäudezugangskontrollen, bei Zolltätigkeiten und in Gefängnissen. Der Detektor arbeitet in zwei Modi, dem Sniff und dem Swap. Im Sniff-Modus schnüffelt der Detektor wie der Spürhund und analysiert die aufgenommene Luft innerhalb von wenigen Sekunden auf Spuren von Sprengstoff oder Betäubungs­mitteln. Im Swap-Modus erfolgt die Detektion über Pads, mit denen verdächtige Oberflächen abgewischt wurden. In beiden Modi gibt der mobile Detektor Alarm, sobald ein Stoff gefunden wird, der in der Gerätebibliothek hinterlegt ist.

Thermoplastischer Schaumguss (TSG). Bisher waren die Gehäuseteile für diesen Spurendetektor aus Aluminiumdruckguss, mit den üblichen Nachteilen Kosten und Gewicht. Beide Faktoren veranlassten den Kunden zusammen mit einem Designer nach alternativen Technologien zu suchen. In Abstimmung mit dem Kunststoffverarbeiter wurden die Gehäuseteile auf im TSG-Verfahren verarbeitete Thermoplaste umgestellt. Bei gleichzeitigem Mehrwert an Funktion reduzierten sich die Stückkosten und durch das deutlich geringere Gewicht wurde die Handhabung leichter.

Der Gehäusebausatz besteht aus insgesamt acht TSG-Teilen und einem Kompaktspritzgussteil, die eine hohe Passgenauigkeit aufweisen und dadurch problemlos montiert werden können. Beim Design wurde bewusst auf eine schlanke Linienführung verzichtet, damit ein robustes und respekteinflößendes Einsatzmittel geschaffen wird. Auch galt es in der Gestaltung der Bauteile einen Schwerpunkt zu finden, der in der Mitte des Griffes liegt und die Handhabung über längere Zeit ermöglicht.

Mehrstufige Fertigung. Die Herstellung der TSG-Gehäuseteile ist vielstufig. Nach der Fertigung der Rohteile aus ABS im TSG-Verfahren werden die Bauteile zum Schutz gegen elektrostatische Entladungen (ESE, ESD) und gegen elektro­magnetische Interferenzen (EMI) im Innenbereich metallisiert. Anschließend erfolgt die Lackierung mit einem hochwertigen 3-Schicht-Lack und zum Schluss der Tampondruck mit Logo und Gerätebezeichnung.

Tray

Robuste und stapelbare Werkstücktrays aus Kunststoff

Wenn der Werkstücktray stabiler sein soll. Details und Funktionen massiv integriert.

Wiederverwendbare, robuste und funktionale Werkstücktrays aus Kunststoff fertigen wir im Thermoplastischen Schaumguss (TSG), konstruiert für Ihre Anwendung.

Die spezielle Technologie des Thermoplastischen Schauguss (TSG) erlaubt uns, dickwandige und funktionale Trays herzustellen. Der TSG fertigt unterschiedliche Wandstärken in einem Bauteil. Selbst Sprünge in der Wandstärke sind möglich. Das Konstruieren ist einfach und die Detaillösungen vielfältig.

Trays werden aus schlagzähen Werkstoffen fertigt. Erhöhte Ansprüche erfüllen verschleiß- und stoßfeste Kunststoffe. Ein langlebiger Einsatz im industriellen Alltag ist gewährleistet.

Einfach konstruieren, einfach integrieren. Funktionen in diesem Werkstück­trägersystem. Das TSG-Verfahren ermöglicht den Einsatz stoßfester Thermoplaste und die Umsetzung robuster und dickwandiger Trays. Der hohe Automatisierungsgrad heutiger Produktionen stellt Trays und Konstrukteure vor individuelle Aufgaben.
Stapeln Der Stapelrand ist umlaufend, er hilft Platz zu sparen im Lager und bei der Bereitstellung. Die selbststützende Konstruktion stapelt größte Lasten, was bei tiefgezogenen Kunststofftrays ungewöhnlich ist.
Handling Der innerbetriebliche Transport erfolgt durch Maschinen oder mit der Hand. Die Tragegriffe sind dickwandig gestaltet, sicheres Greifen bei großen Traglasten ist gewährleistet.
Positionierung Die exakte Positionierung der Trays auf den Vorrichtungen wird durch integrierte Indexierbuchsen gewährleistet. Der Roboter kann schnell und präzise zugreifen.
Varianz Zwei unterschiedliche Größen und eine Variante als Deckel aus nur einem Form­werkzeug. Intelligenter Formenbau sorgt für niedrige Werkzeugkosten dank Wechseleinsätzen.

Protein-Analysegerät

Thermoplastischer Schaumguss (TSG). Flache Gehäuseschalen bringen kostengünstige Formen

Kompliziert ganz einfach. Flache Gehäuseschalen bringen günstige Formkosten.

Infektionskrankheiten zählen zu den häufigsten Todesursachen weltweit. Zunehmende Resistenzen gegen Antibiotika, die rasante Verbreitung von Erregern über Ländergrenzen hinweg sowie neu auftretende Viren und Bakterien bilden den Rahmen für eine der größten wissenschaftlichen und medizinischen Herausforderungen unserer Zeit.

Die Translationale Medizin bildet die Schnittstelle zwischen der theoretischen Laborforschung und der praktischen Anwendung am Patienten, nach dem Motto „bench to bedside“. Forschungsergebnisse sollen so schnell wie möglich in klinischen Anwen­dungen in Form von Prävention und Therapie zur Verfügung stehen.

Das zur Unterstützung der translationalen Forschung entwickelte Protein-Analysemessgerät ist ein integriertes System, das für die parallele Analyse mehrere Biomarker in Piktogrammmengen biologischer Proben entwickelt wurde. Das innovative Analysemessgerät ermöglicht es den Wissenschaftlern ein Maximum an qualitativ hochwertigen und reproduzierbaren Erkenntnissen aus den Proben zu gewinnen. Das System ist in zwei Ausführungen erhältlich, die erste zur Aufnahme von 96 Proben und die zweite für 384 Proben pro Durchgang.

Das Protein-Analysemessgerät besteht aus insgesamt sechs Kunststoffgehäuseteilen, die im Thermoplastischen Schaumguss (TSG) aus dem Material Styrol/Butadien und mit einem Brandschutzzusatz hergestellt werden. Die Gehäuseteile weisen neben der Brandschutzklasse V0 eine hochwertige Strukturlackierung auf, die die Anmutung der Teile hervorhebt und den Kunststoff vor aggressiven Reinigungs­mitteln schützt. Die rückseitigen Anschraubdome haben sowohl Kernlochbohrungen für selbstformende PT-Schrauben als auch Gewindeeinsätze für das regelmäßige Abnehmen von Gehäuseteilen zur Wartung.

Für die Montage des Touch-Displays und der zwei mechanischen Tasten weist die Front des Deckels diverse Konstruktionselemente auf. Durchgangsbohrungen und ein langer Tastenschacht, die entgegen der Entformungsrichtung liegen, wurden im Werkzeugkonzept umgesetzt. Die flache Ausgestaltung der Formteile bringt geringe Werkzeugkosten und beschleunigt die Fertigstellung der Werkzeuge. Zur Aufnahme der Probenkörper besitzt die Gehäusefront eine rechteckige Aussparung, die mit einer kleinen Kunststoffabdeckung verschlossen ist.  

 

 

 

Leistungselektronik

Kunststoff-Endkappen

Individuelle Standardgehäuse. Endkappen aus Kunststoff werten Strangpressprofile auf.

Elektronikgehäuse werden aus Kostengründen und der Einfachheit halber oft aus Aluminiumstrangpressprofilen gefertigt. Dabei bilden die Strangpressprofile den Grundkörper der Geräteeinhausung. Die Vorteile sind eine variable Länge und die Robustheit. Hinzu kommt der Nebeneffekt, dass Elektronikkomponenten einfach eingeschoben werden können. Nachteile sind die fehlende Flexibilität im Design und damit verbunden ein gewöhnliches Aussehen.

Um aus einem solchen Entwicklungs­kompromiss das Beste zu machen, kann das Standardgehäuse durch individuell gestaltete Abschlusskappen aus einem Thermoplastischen Schaumguss (TSG) aufgewertet werden.

Die Gestaltung der Rückseitenplatte erfolgt nüchtern und funktionsbasiert. Sie bedarf deswegen keiner besonderen Aufmerksamkeit.

Anders verhält es sich bei der Frontseitenplatte, denn hier besteht die Möglichkeit über Form- und Farbgebung dem an sich standardisierten Gehäuse ein unverwechselbares Design zu geben.

Nahezu unerschöpflich sind die Möglichkeiten in der Konstruktion dieser Bauteile. Mit der Integration von Aufnahmepunkten für Displays und Bedienelementen steigt die Funktionalität der Frontseitenplatte. Den Schutz vor Nässe und Staub gewährleisten in den Front- und Rückseitenplatten gekammerte Dichtelemente. Die wartungs­freundliche Demontage und Wiedermontage im Service wird durch Gewindeeinsätze oder die moderne PT-Schraube ermöglicht. Vorzugsweise geschieht das über die Rückseite. Der Frontseite ist es vorbehalten, Design und technische Funktion miteinander in Einklang zu bringen.

Im TSG-Verfahren können die meisten thermoplastischen Werkstoffe verarbeitet werden und dadurch auch Anforderungen an die Schlagfestigkeit und Robustheit erfüllt werden.

Für beide Endkappen gilt, dass sich wegen der geringen Bauteiltiefe sehr günstige Formkosten einstellen. So tun sich wirtschaftlich gut zu vertretende Wege auf, um trotz des überwiegend standardisierten Konstruktionsverfahrens individuelle Designkomponenten bis hin zu einem Corporate Identity einfließen zu lassen.

Pinbohrgerät

Pinbohrgerät

Pinbohrgerät. Präzisionsmodelle in der Dentalmedizin schnell und sicher gebohrt.

Ein passgenauer Zahnersatz setzt die präzise Herstellung des Zahnmodells voraus. Erschwert wird dies durch die natürliche Gipsexpansion, wodurch der Zahnkranz nach der Expansion mit der Mundsituation des Patienten nicht mehr übereinstimmt. 

Um den Einfluss dieser Expansion zu mindern, werden in der Dentalmedizin Pinbohrgeräte eingesetzt, mit denen sich Pinpositionen exakt, schnell und sicher in eine Kunststoffplatte bohren lassen. Sie ist in einer Plattenaufnahme gespannt, die wiederum magnetisch fixiert wird, um die Bohrposition unverrückbar zu sichern. Mithilfe eines Lasers kann der Anwender die Bohrposition auf dem Zahnkranzabdruck einfach finden und den Bohrvorgang auslösen.

Die in der Kunststoffplatte als Pinbohrlöcher gespeicherten Lageinformationen dienen zur exakten Positionierung des ausgegipsten Zahnkranzes. Dadurch wird der eben beschriebenen Gipsexpansion entgegengewirkt und die exakte Mundsituation des Patienten im Modell wiedergegeben.  

Die Kunststoffgehäuseteile des dargestellten Pinbohrgeräts werden aus dem Material Styrol/Butadien im thermoplastischen Schaumguss hergestellt und sind brandgeschützt nach UL 94 V-0. Zur Stromversorgung des Lasers liegt ein Aluminiumrohr im Tragarm des Rückteils. Das um 90 Grad gebogene Kabelrohr wird vor dem Spritzgussprozess in das Werkzeug eingelegt und anschließend umspritzt.

Die Front des Pinbohrgeräts weist Durchbrüche für die Bohrvorrichtung, den magnetischen Plattenträger und die beiden Drucktaster auf. In den Durchbrüchen für die Drucktaster ist jeweils ein Gewinde, das mittels eines Gewindekerns geformt wird, der nach dem Auswerfen des Gehäuses von Hand ausgedreht wird. Ein Prozessschritt, der bei höheren Stückzahlen auch automatisiert stattfinden kann. Hier aber zu Gunsten niedriger Werkzeugkosten einfach und manuell gelöst ist. Die rückseitigen Anschraubdome haben Kernlochbohrungen für selbstformende PT-Schrauben,so dass in der nachfolgenden Montage alle weiteren Komponenten einfach und schnell angeschraubt werden können.

 

 

 

 

 

Kassettengehäuse

Kassettengehäuse
Kassettengehäuse kombiniert

Mehrrollendrucker. Effizienzsteigerung bei der Etikettierung von Lebens­mitteln.

Im Bereich der Etikettierung und Preiszeichnung von Lebens­mitteln unterstützen Mehrrollendrucker die schnelle und flexible Weiterverarbeitung. Mit bis zu fünf aneinander gereihten Etikettenkassetten wird die parallele Etikettierung und Bedruckung von Produkten ermöglicht, unabhängig von der Produktzufuhr. Dadurch kann eine einzelne Produktionslinie individuell gestaltet und optimal ausgelastet werden.

Das auf Funktion ausgelegte Strukturbauteil wird im TSG-Verfahren aus dem Material Styrol Butadien hergestellt und bildet die Hauptkomponente eines Mehrrollendruckers. Das robuste Material ist schlagzäh, kerbunempfindlich und weist wegen der dickwandigen Konstruktion die Brandschutzklasse 5VA auf. Integrieren von Funktion wird dank der Gestaltungs­freiheit des TSG-Verfahrens ermöglicht. So beinhaltet das werkzeugfallende Teil dickwandige Montagepunkte für den Einsatz von Umlenkrollen, Umlenkspuren und Etikettenrollen mittels PT-Schrauben.

Durch ein integriertes Schnellwechselsystem ist es möglich, die Kassette im laufenden Betrieb herauszunehmen und mit einer neuen Etikettenrolle zu bestücken. Dies und die Tatsache, dass die Etikettenrollen beim Produktwechsel nicht mehr gewechselt werden müssen, reduziert die Gefahr von Stillständen entlang des Produktionsprozesses auf ein Minimum.

Reinigungsbehältnisse

Reinigungsträger sind ein spezieller Anwendungsfall für Werkstückträger

Reinigungs­behältnisse mit erweiterter Chemikalienbeständigkeit. Monoblock-Werkstück­träger aus Polymeren statt aus korrodierenden Metalldrähten und Blechen.

Bauteilsauberkeit: Kern konstruiert und fertigt chemikalienresistente Werkstück­träger für industrielle Reinigungsprozesse. Auswahl und Modifikation des Werkstoffes reagieren zielgerichtet auf die vom Kunden verwendeten Reinigungs­mittel und die jeweilige Einsatzsituation.

Beständigkeit gegen eingesetzte Chemikalien und Temperaturen, Handhaben von Bauteilen mit komplexer Kontur oder hohem Teilegewicht, Gestalten von Abtropfmöglichkeiten, Vermeiden von Rückkontamination und die nahtlose Integration in die Intralogistik des Unternehmens sind oft erfüllte Anforderungen.

Effizienter in den Prozessen. Vom einfachen Drahtgestell weg zum funktions­integrierten Reinigungs­behältnis aus Thermoplasten ist oft ein lohnender Schritt. Dank der Formfreudigkeit von Thermoplasten sind hochgradig funktions­integrierte Reinungsgestelle möglich. Die Effizienz Ihrer Fertigungsprozesse wird immens gesteigert: Neben der industriellen Reinigung sind gezielte Robotergriffe, Prüfungen, selbst Montagen innerhalb des Reinigungsgestells möglich.

Schonender. Ein entscheidender Vorteil von Reinigungs­behältern aus Kunststoff gegen solchen aus Metall ist, dass empfindliche Bauteiloberflächen geschont werden.

Zuverlässiger. Drahtgestelle oder Blechbehälter verbiegen leicht. Sie kennen dieses Ärgernis bestimmt auch von zu Hause, wenn die Aufnahmen des Drahtkorbs der Spülmaschine verbogen sind. Im industriellen Einsatz bedeuten verbogene und verzogene Reinigungs­behälter Produktionsstillstand. Hier sind Werkstück­träger aus Thermoplasten klar im Vorteil, sie sind verwindungs­steif und können nicht verbeulen.

Fernsteuerungen in der Fördertechnik

Fernsteuerungen für Hebezeuge

Verdeckte Sollbruchstellen vermitteln Vollwertigkeit. Flexible Handgehäuse für modular aufgebaute Gerätefamilie. Realisiert mit wenigen Form­werkzeugen.

Funkbasierte Steuerungen werden im Industrieeinsatz immer beliebter. Zu verdanken ist dieser Erfolg der funktionalen Zuverlässigkeit von redundantem Funkweg und der modernen Generation von Akkus. Der Einsatz ist in der EN ISO 13849-1 geregelt. Sie steuern Anlagen, Geräte, Hebezeuge und Signale. Moderne Funksender sind frei programmierbar. Das macht sie universell einsetzbar. Abhängig von den zu steuernden Geräten und der zu erfüllenden Funktions­vielfalt werden unterschiedlich viele Befehlsgeräte im Bedienfeld benötigt.

Die hier neu entwickelte Gerätefamilie steuert Kräne und Hebezeuge. Sie hat mindestens 6 Taster. Je nach Ausstattungswunsch können die Handsteuerungen mit der doppelten Anzahl von Tastern bestückt werden.

Bisher setzte der Kunde Standardgehäuse für 12 Taster ein. Die freien Plätze waren durch Blindstopfen verschlossen. Ein solcher Handsender gibt dem Benutzer das Gefühl, eine nicht vollwertige Ausrüstung und nur eine eingeschränkte Kontrolle und Steuerungs­möglichkeit zu haben.

Funkfernsteuerungen in drei Gehäusegrößen sind entstanden. Nicht verwendete Plätze sind verdeckte Sollbruchstellen. Das ergonomische Industriedesign ist preisgekrönt. Der Thermoplastische Schaumguss (TSG) gab die Gestaltungs­freiheit.